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Abstract
Background: Clara cell protein (CC16), the main secretory product of bronchiolar Clara cells, plays an important 
protective role in the respiratory tract against oxidative stress and inflammation. The purpose of the study was to 
investigate the role of elemental carbon ultrafine particles (EC-UFP)-induced oxidative stress on Clara cells and CC16 in 
a mouse model of allergic lung inflammation.

Methods: Ovalbumin (OVA)-sensitized mice were exposed to EC-UFP (507 μg/m3 for 24 h) or filtered air immediately 
prior to allergen challenge and systemically treated with N-acetylcysteine (NAC) or vehicle prior and during EC-UFP 
inhalation. CC16 was measured up to one week after allergen challenge in bronchoalveolar lavage fluid (BALF) and in 
serum. The relative expression of CC16 and TNF-α mRNA were measured in lung homogenates. A morphometrical 
analysis of mucus hypersecretion and electron microscopy served to investigate goblet cell metaplasia and Clara cell 
morphological alterations.

Results: In non sensitized mice EC-UFP inhalation caused alterations in CC16 concentration, both at protein and mRNA 
level, and induced Clara cell hyperplasia. In sensitized mice, inhalation of EC-UFP prior to OVA challenge caused most 
significant alterations of BALF and serum CC16 concentration, BALF total protein and TNF-α relative expression 
compared to relevant controls; their Clara cells displayed the strongest morphological alterations and strongest goblet 
cell metaplasia occurred in the small airways. NAC strongly reduced both functional and morphological alterations of 
Clara cells.

Conclusion: Our findings demonstrate that oxidative stress plays an important role in EC-UFP-induced augmentation 
of functional and morphological alterations of Clara cells in allergic lung inflammation.

Background
There is rapidly increasing epidemiological evidence
associating respiratory health effects and exposures to
ultrafine particles (UFP) in a susceptible population, such
as elderly, young children, and people with pre-existing
respiratory conditions [1]. For adult asthmatics, ambient
levels of UFP (aerodynamic diameter <0.1 μm) were
found to have a higher specific toxicological role com-
pared to larger particles [2]. UFP, due to their large sur-

face area, have enhanced capabilities to produce reactive
oxygen species [3].

Clara cells are non-ciliated secretory epithelial cells lin-
ing the pulmonary airways, distinct from mucous and
serous secretory cells in morphology and secretory prod-
ucts [4]. In rodents Clara cells represent the most fre-
quent secretory cell population of proximal and distal
airways [5]. Their function is mainly to protect the respi-
ratory tract. Clara cells act as stem cells in the repair of
bronchial and bronchiolar epithelium, have a high xeno-
biotic transformation capacity and secrete several pro-
teins with important biological activities [6]. The main
secretory molecule is a 16 kD protein (termed CC16,
CC10, or CCSP), which is found in the electron dense,
ovoid secretory granules, within the endoplasmic reticu-
lum of Clara cells [7] and in the lining fluid throughout
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the conducting airways [8]. The immunomodulatory
activity of CC16 has been well documented [9,10]. CC16
can inhibit phospholipase A2 activity [11], while inflam-
matory cytokines like TNF-α can modulate CC16 pro-
duction [12]. In humans CC16 has been successfully used
as a marker of alveolo-capillary barrier permeability [13-
15]. Investigations of Clara cells response to inhaled par-
ticulates reflect the toxic effects of these particles to the
respiratory tract [16]. Previous studies have reported
alterations of CC16 concentrations in BALF and serum
following exposure to cigarette smoke, ozone or DEP [17-
19]. CC16 knockout mice showed aggravated early pro-
inflammatory response to oxidant challenge [20,21], indi-
cating a protective role of CC16 against acute oxidative
stress.

Allergic asthma is characterized by airway hyperre-
sponsiveness, airway inflammation, increased mucus
production and lower antioxidant defenses [22]. The role
of Clara cells and their secretory products in asthma is
still controversial. Clara cells seem to exert protective
effects against the development of the disease [23-26];
conversely, they are involved in allergen-induced mucus
production [27,28]. We recently showed that particle-
induced oxidative stress plays an important role in UFP-
induced exacerbation of allergic airway inflammation
[29].

The aim of the present study was to investigate the role
of particle-induced oxidative stress on functional and
morphological alterations of Clara cells in a mouse model
of lung allergic inflammation. We measured serum and
BALF CC16 concentration, CC16 relative expression in
the lung in parallel to its activator TNF-α, and evaluated
morphological alterations of Clara cells and goblet cell
hyperplasia with and without the addition of the antioxi-
dant NAC.

Materials and methods
Animals and materials
Five to seven-week-old Balb/c mice (Charles River,
Sulzfeld, Germany) were housed in individually venti-
lated cages (VentiRack™, cage type CU-31, BioZone,
Ramsgate, Kent, UK) and received a standard pellet diet
and water ad libitum. The study was conducted under
federal guidelines for the use and care of laboratory ani-
mals and was approved by the Government of the District
of Upper Bavaria. All chemicals were purchased from
Sigma-Aldrich Chemie, Deisenhofen, Germany, unless
otherwise specified.

Allergen sensitization/challenge protocol
Mice were sensitized by repetitive intraperitoneal injec-
tions of 1 μg OVA (grade VI; Sigma Aldrich Chemie)/
Alum (2.5 mg; Pierce Chemical Co, Rockfort, IL, USA) in
phosphate buffered saline (PBS) on days 0, 7, 14, 28, 42,

56. Blood samples were taken before and after sensitiza-
tion. OVA-specific IgE and IgG1 were measured in
plasma samples by ELISA as described previously [30].
OVA/alum sensitized mice (day 63), compared to non-
sensitized controls, were characterized by high titers of
OVA-specific IgE (24.2 ± 1.8 vs 0.1 ± 0.01 μg/ml) and
OVA-specific IgG1 (1392.6 ± 182.6 vs <0.1 μg/ml). On
day 70 the mice were aerosol-challenged for 20 min with
1%-LPS-depleted [30] OVA in PBS or with PBS alone
delivered by Pari-Boy nebulizer (Pari GmbH, Starnberg,
Germany).

EC-UFP production, characterization and exposure
EC-UFP were generated by electric spark discharge
(model GFG1000, Palas GmbH, Karlsruhe, Germany)
using agglomerated carbon particles as previously
described [29,30]. EC-UFP average size distributions
were characterized by a count median diameter of 51.7
nm (geometric standard deviation = 1.54) and an average
mass median diameter of 84.7 nm. Spark generated EC-
UFP are considered to be structurally similar and form
aggregates similarly to the primary particles of modern
diesel emissions [31], but with extremely low condensed
organic matter. Organic carbon content of EC-UFP was
estimated less than 5% by evolved gas analysis and Fou-
rier transform analysis [32]. Spark generated EC-UFP are
then considered to be relatively inert particles compared
to diesel exhaust or concentrated atmospheric particles.
We chose them for the inhalation exposure because of
their defined chemical composition and stable physical
characteristics during the 24 h exposure experiment.

Details of animal exposures were described previously
[29]. All EC-UFP exposures used for this study were per-
formed for 24 h with a mass concentration of 507 μg/m3,
which corresponds to an average particle number con-
centration of 9.3 × 106/cm3.

Experimental design
A schematic representation of the study protocol is
shown in Fig. 1.

In order to evaluate the effect of EC-UFP-induced oxi-
dative stress on functional and morphological alterations
of Clara cells, sensitized (S) and subsequently challenged
mice (OVA) were exposed to EC-UFP with (S/NAC/UFP/
OVA) and without NAC treatment (S/UFP/OVA). NAC
was administered with two intraperitoneal injections
(250 mg/kg body weight in PBS, 200 μl), 1× shortly before
and 1× close to mid-EC-UFP exposure. OVA sensitized
and subsequently challenged mice exposed to filtered air
(S/OVA) and non sensitized (NS) or sensitized mice
exposed to EC-UFP (NS/UFP, S/UFP) with and without
NAC treatment served as controls. In addition, untreated
animals served as baseline controls (n = 8). Before bron-
choalveolar lavage (BAL), blood samples were taken from
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retro orbital plexus and centrifuged. Serum aliquots were
stored at -80°C. BAL was performed at 0, 1, or 7 days after
OVA challenge, or after termination of EC-UFP exposure
(n = 4/time point). After centrifugation, BALF was stored
at -80°C for subsequent analysis. Lungs were stored in
formalin for histology/snap frozen in liquid nitrogen and
stored at -80°C for isolation of RNA. Airway hyperre-
sponsiveness was evaluated by body plethysmography in
untreated animals, or 24 h after OVA challenge in S/
OVA, S/UFP/OVA and S/NAC/UFP/OVA (n = 5-7).

Bronchoalveolar lavage (BAL) analysis
Airways were lavaged five times with 0.8 ml PBS. Ali-
quots of cell-free BAL fluid were assayed in duplicate for
total protein (Coomassie Protein Assay, Pierce Chemical
Co.) and for IL-5, IFN-γ and IL-13 by two site ELISAs
using antibodies from BD Biosciences (IL-5 and IFN-γ,
Heidelberg, Germany) and BioSource (IL-13, Camarillo,
CA, USA) as suggested by the manufacturer. Viability and
yield of BAL cells was quantified via trypan blue exclu-
sion in a hemocytometer. Differential BAL cell count (400
cells/sample) was performed on cytospins (600 rpm for
10 min) fixed and stained with Diff-Quick (Dade Behring,
Marburg, Germany).

Determination of CC16 in BALF and serum
Cell-free BALF and serum aliquots were assayed in dupli-
cate for CC16 by an automated latex immunoassay using
a polyclonal rabbit antibody raised against rat CC16 and
applicable to both rat and mouse CC16 analysis [33].

RNA extraction and real time RT-PCR
Real-time RT-PCR analysis was performed in the lungs
retrieved 1 day after EC-UFP exposure/allergen chal-
lenge. After homogenization, total RNA was isolated
from total lung tissue using the RNeasy Mini kit (Qiagen
GmbH, Hilden, Germany) as per supplier's instructions.
First strand cDNA synthesis was performed using the
iScript cDNA synthesis kit (BioRad Laboratories GmbH,
München, Germany). Quantitative PCR was performed
using TaqMan® Gene Expression Assays (CC16:
Mm01230908_m1; TNF-α: Mm00443258_m1; 18S:
Hs99999901_s1) and TaqMan® Universal PCR Master Mix
in an ABIprism7000 Sequence Detection System
(Applied Biosystems, Darmstadt, Germany). The mRNA
expression levels were normalised to the according
expression levels of the housekeeping gene 18S and the
mean expression levels of the untreated group using the
ΔΔCT method.

Histological evaluation and morphometrical analysis
After BAL the lungs were removed and fixed in 10% buff-
ered formalin. The left lobe was used for histopathology.
After paraffin embedding, 3.5 μm sections were stained
with hematoxylin-eosin (H&E) and periodic acid Schiff
(PAS). In order to evaluate goblet cell metaplasia and
mucus hypersecretion, we performed a morphometrical
analysis of volume density of PAS positive material (dou-
ble square lattice test system E80 [34] and Optimas soft-
ware package, Washington, USA) in cross sections of
small (circumference ≤ 800 μm), and large (circumference
>800 μm) airways of the following groups: NS/UFP, S/
OVA, S/UFP/OVA and S/NAC/UFP/OVA. The data are
expressed as percentage of PAS positive material/total
epithelial cells.

Transmission (TEM) and scanning (SEM) electron 
microscopy
For electron microscopy, lungs were fixed by intratra-
cheal perfusion with 2.5% glutaraldehyde in 0.1 M caco-
dylate buffer (pH 7.4), (n = 2/time point/group). For TEM
peripheral and central sections of the right lung were
minced, for SEM the left lung was cut longitudinally; all
lung samples were fixed for further 4-7 days in glutaralde-
hyde and postfixed in 1% osmiumtetroxide in cacodylate
buffer for 1 h at 4°C. For TEM the samples were embed-
ded in EMbed 812 (Science Services, München, Ger-
many). Semithin sections (500 nm) stained with
Richardson solution (methylenblue, azur II) were used for
selecting the portion suitable for electron microscopy.
Then, ultrathin sections (silver coloured) were cut,
mounted on formvar-coated 75-mesh nickel grids, dou-
ble-stained with uranyl acetate and lead citrate and
observed in a transmission electron microscope (JEOL

Figure 1 Experimental groups (left) and designation (right). EC, 24 
h exposure to elemental carbon UFP (507 μg/m3); open arrows, 2× in-
traperitoneal injection with N-acetylcysteine; black triangle, OVA aero-
sol challenge; , sacrifice, BAL, histology and electron microscopy. S, 
sensitized; NS, non sensitized; OVA, challenged with aerosolized OVA; 
UFP, exposed to EC-UFP.
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1210, Tokyo, Japan) at 80 kV. Photographs were taken
using Kodak 4489 films.

For SEM, the specimens were rinsed twice in cacody-
late buffer, dehydrated in an ascending series of ethanols
and critical point dried. The lungs were then mounted on
plates using Leit-Tabs (Plano, Wetzlar, Germany), sput-
ter-coated with 10 nm gold and examined in a scanning
electron microscope (JEOL 6300, Tokyo, Japan) working
at 15 kV. Photographs were taken using a digitalized
image processing system.

Lung function tests
Lung function tests were performed 24 h after allergen
challenge in unrestrained animals using whole body
plethysmography (Buxco® Electronics, Sharon, Connecti-
cut, USA). For whole body plethysmography, the
'enhanced pause' (PenH) determined before and after
methacholine exposure was applied as an index of airway
hyperresponsiveness (AHR), as previously described
[29,30]. The doses of methacholine aerosol (M1-M5)
delivered to the mice were the following: 10 mg/ml meth-
acholine nebulized for 1, 2 and 4 minutes (M1-M3), fol-
lowed by 40 mg/ml methacholine for 2 and 4 minutes
(M4-M5). A data recording interval of 3 min was intro-
duced after each methacholine level. The mean of the
PenH values determined in the 2nd and 3rd min was used
for quantifying AHR.

Statistical analysis
Data were expressed as mean ± SD. For statistical evalua-
tion, one-way analysis of variance (ANOVA) with post-
hoc Scheffé Test (applied for BAL cells and BALF total
protein, cytokines and morphometrical analysis) and
Least Significant Difference-Test (LSD) (applied for CC16
analysis in BALF and serum, CC16 and TNF-α relative
mRNA expression and airway hyperresponsiveness)
comparisons were used (Statistica Stat Soft, 6.0). A p-
value < 0.05 was considered to be significant.

Results
NAC reduced EC-UFP-induced alterations in CC16 
concentrations in BALF and serum
The concentrations of CC16 in BALF and serum of
untreated mice are shown in Fig. 2 by a dotted line. Non
sensitized and sensitized mice exposed to EC-UFP for 24
h (NS/UFP, S/UFP) showed a significant decrease in
CC16 in BALF at 1-day time point (Fig. 2a, upper panel).
EC-UFP-induced decrease in BALF CC16 concentrations
were abrogated by NAC treatment (NS/NAC/UFP; S/
NAC/UFP). One week after EC-UFP inhalation, BALF
CC16 concentrations almost reached the control level. In
sensitized mice, OVA challenge alone caused a transi-
tional reduction in CC16 content in BALF at 1-day time
point (S/OVA, Fig. 2b, upper panel). NAC minimally

reduced OVA-induced CC16 alterations (S/NAC/OVA).
Sensitized mice exposed to EC-UFP inhalation prior to
allergen challenge showed an initial significant reduction
in BALF CC16, followed by a significant increase in CC16
BALF content at the 7-day time point compared to
untreated animals, NS/UFP, S/UFP and to S/OVA (S/
UFP/OVA, Fig. 2b, upper panel). NAC treatment signifi-
cantly reduced this increase (S/NAC/UFP/OVA).

In contrast to BALF CC16 concentrations, serum CC16
concentrations increased significantly following exposure
to EC-UFP in both non sensitized and sensitized mice
(Fig. 2a, bottom panel). Increased CC16 concentrations
in serum were detectable also one week after EC-UFP
inhalation. NAC reduced serum CC16 concentrations in
sensitized mice exposed to EC-UFP at the 7 days time
point (Fig. 2a, bottom panel). In S/OVA serum CC16 con-
centrations were increased compared to untreated ani-
mals at all time points of evaluation (S/OVA, Fig. 2b,
bottom panel) and NAC treatment had no effect on
serum CC16 concentration (S/NAC/OVA). In sensitized
animals, EC-UFP inhalation followed by allergen chal-
lenge further increased serum CC16 concentration (S/
UFP/OVA, Fig. 2b, bottom panel). NAC treatment signif-
icantly reduced the EC-UFP-induced increased serum
CC16 concentrations (S/NAC/UFP/OVA).

NAC reduced EC-UFP-induced alterations in BALF total 
protein concentration, cytokines and airway inflammation
The concentration of BALF total protein in untreated
mice is shown in Fig. 3 by a dotted line. In sensitized
mice, OVA challenge alone caused an increase in BALF
total protein concentration compared to control, which
was significantly reduced by NAC treatment (Fig. 3b). A
further increase of BALF total protein was detected in
sensitized mice exposed to EC-UFP inhalation prior to
OVA challenge (S/UFP/OVA) at the 7 days time point
(Fig. 3b). NAC significantly reduced BALF total protein
concentrations (S/NAC/UFP/OVA) at the 7 days time
point. No induction of protein levels were observed in
any of the non-challenged groups (NS/UFP, S/UFP, with
and without NAC treatment, Fig. 3a).

In sensitized mice, EC-UFP inhalation prior to OVA
challenge (S/UFP/OVA) caused a significant increase of
BAL inflammatory infiltrate and BALF cytokines IL-5
and IL-13 7 days after OVA challenge, compared with
sensitized and challenged mice exposed to filtered air (S/
OVA); NAC treatment significantly reduced EC-UFP-
induced augmentation of lung allergic inflammation (S/
NAC/UFP/OVA), (See additional file 1: functional char-
acterization of the mouse model). NAC non-significantly
reduced airway inflammation in S/OVA mice (S/NAC/
OVA, see additional file 1: functional characterization of
the mouse model). No significant alterations in the IFN-γ
concentration were observed in any of the groups (data
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Figure 2 BALF and serum CC16 concentration. (A) Non sensitized (NS/UFP) and sensitized (S/UFP) mice exposed to EC-UFP, and treated with NAC 
(NS/NAC/UFP and S/NAC/UFP, respectively); (B) Sensitized and challenged mice (S/OVA), treated with NAC (S/NAC/OVA), or exposed to EC-UFP 24 h 
prior to OVA challenge (S/UFP/OVA), and treated with NAC (S/NAC/UFP/OVA). NAC treatment was performed prior to and close to mid EC-UFP expo-
sure. Untreated mice served as baseline controls (dotted line). Data presented as mean ± SD (n = 4-7/time point). *p < 0.05, **p < 0.01 vs untreated; 
++p < 0.01 vs S/UFP;#p < 0.05, ##p < 0.01 NS/UFP, S/UFP, S/OVA, S/NAC/UFP/OVA vs S/UFP/OVA.
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not shown). Non sensitized mice exposed to EC-UFP did
not develop an inflammatory infiltrate and showed no
cytokine release (NS/UFP, see additional file 1: functional
characterization of the mouse model).

At the mRNA level, NAC failed to reduce EC-UFP-induced 
alterations of CC16, but reduced EC-UFP-induced TNF-α 
relative expression
CC16 and TNF-α relative mRNA expression was evalu-
ated at 1-day time point in lung homogenates. The rela-
tive mRNA expression of CC16 and TNF-α in untreated
mice is shown in Fig. 4 by a dotted line. In sensitized and
non sensitized mice EC-UFP exposure alone induced an
increase in CC16 and TNF-α relative mRNA expression
compared to untreated mice (Fig. 4a, upper and bottom
panel respectively). In sensitized animals allergen chal-
lenge alone had no significant effects on relative CC16
mRNA expression, but significantly increased TNF-α
expression (S/OVA, Fig. 4b, upper and bottom panel,
respectively). In sensitized animals, EC-UFP exposure
prior to allergen challenge increased CC16 mRNA
expression similarly to NS/UFP and S/UFP (S/UFP/OVA,
Fig. 4b, upper panel), whereas it significantly increased
TNF-α expression compared to all other groups (S/UFP/
OVA, Fig. 4b, bottom panel). NAC moderately reduced

CC16 and TNF-α mRNA expression in non challenged
animals (NS/NAC/UFP, Fig. 4a, striped bars). In sensi-
tized and challenged animals NAC failed to reduce EC-
UFP-induced increase in CC16 expression, but strongly
reduced EC-UFP-induced increase in TNF-α mRNA
expression (S/NAC/UFP/OVA, Fig. 4b, upper and bottom
panel, respectively, striped bars).

NAC strongly reduced EC-UFP-induced mucus 
hypersecretion in allergic animals
In order to evaluate the degree of goblet cell metaplasia
and mucus hypersecretion we performed a morphomet-
rical analysis of PAS positive material in histological
specimen retrieved 7 days after allergen challenge/EC-
UFP inhalation. NS/UFP showed no PAS positive mate-
rial (Fig. 5a, b, c). In sensitized animals allergen challenge
alone had a significant effect on goblet cell metaplasia
and mucus hypersecretion (Fig. 5a, b, d). EC-UFP expo-
sure prior to allergen challenge increased goblet cell
metaplasia and mucus hypersecretion in the small air-
ways, but not in the large airways (Fig. 5a, b, e). NAC
treatment prior and during EC-UFP inhalation signifi-
cantly decreased goblet cell metaplasia and mucus hyper-
secretion both in small and large bronchi (Fig. 5a, b, f).

Figure 3 BALF total protein concentration. (A) Non sensitized (NS/UFP) and sensitized (S/UFP) mice exposed to EC-UFP, and treated with NAC (NS/
NAC/UFP and S/NAC/UFP, respectively); (B) Sensitized and challenged mice (S/OVA), treated with NAC (S/NAC/OVA), or exposed to EC-UFP 24 h prior 
to OVA challenge (S/UFP/OVA), and treated with NAC (S/NAC/UFP/OVA). NAC treatment was performed prior to and close to mid EC-UFP exposure. 
Untreated mice served as baseline controls (dotted line). Data presented as mean ± SD (n = 4-8/time point). *p < 0.05, **p < 0.01 vs untreated; +p < 
0.05 vs S/OVA; #p < 0.05, ##p < 0.01 NS/UFP, S/UFP, S/OVA, S/NAC/UFP/OVA vs S/UFP/OVA.
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NAC strongly reduced EC-UFP-induced morphological 
alterations in Clara Cells
In the analysis of the samples performed by SEM and
TEM, we focussed on the small airways (circumference ≤
800 μm), one week time point. In untreated mice, Clara
cells appeared as cuboidal cells with a central narrow pro-
jection into the airway lumen covered with short
microvilli (Fig. 6, untreated). The upper third of the cell
contained well organized arrays of smooth endoplasmatic
reticulum. Two types of mitochondria could be observed;
one small and elongated with cristae and the other large
and usually round, with few or no cristae. Dense homoge-
nous secretory granules (Fig. 6, untreated, arrows) bound
by a single limiting membrane were located near the apex
of the Clara cells most regularly immediate below the
luminal membrane. Both merocrine and apocrine secre-
tions were observed. Throughout the depth of the epithe-
lium there were close connections between adjacent cells.

No goblet cells could be detected. At the SEM, Clara cells
from untreated mice appeared often arranged in a pattern
forming lines. They showed dome-shaped apical projec-
tions into the lumen with rough surfaces (Fig. 7,
untreated).

Following EC-UFP exposure, no particles could be
detected within Clara cells. EC-UFP inhalation alone
induced alterations in the morphology of Clara cells. In
TEM as well as in SEM the Clara cells of the bronchioli
exhibited hyperplasia and proliferation, so that the cili-
ated cells seemed to be reduced in number and appeared
to be constricted (Fig. 6, NS/UFP, arrow; Fig. 7, NS/UFP).
Sensitized animals exposed to EC-UFP showed the for-
mation of clusters of 3 or 4 Clara cells close together (Fig
7, S/UFP). NAC reduced to a great extent these morpho-
logical alterations: no clusters were found, and Clara cell
surface displayed the typical dome-shaped apical projec-
tions as in untreated mice (Fig. 6 and 7, NS/NAC/UFP
and S/NAC/UFP).

In S/OVA mice, the bronchioli featured goblet cell
metaplasia: the dense homogenous secretory granules of
the Clara cells converted to mucus containing vesicles,
some of them containing dark residues of the secret (Fig.
6, S/OVA). Signs of partial necrosis were also present.
Primarily merocrine secretion of mucus was found. The
vesicles in close proximity to the cell surface were bulging
the plasma membrane. Due to this effect, at the SEM
analysis the surface area of the transformed cells exhib-
ited a vesicular pattern (Fig. 7, S/OVA).

NAC treatment reduced the ultrastructural modifica-
tions of the Clara cells of S/OVA mice (data not shown).

In sensitized animals, EC-UFP exposure prior to OVA
challenge produced most profound ultrastructural dam-
age and necrosis. Goblet cell metaplasia was more pro-
nounced compared to S/OVA animals. In some areas no
rudiments of the secretory granules could be detected
and the abundant smooth endoplasmatic reticulum as
well as the dimorphic mitochondria were entirely dis-
placed by mucous vesicles. Widening of the intercellular
spaces and detachment of the epithelium were frequently
observed (Fig. 6, S/UFP/OVA, arrows). At the SEM analy-
sis, a few highly hyperplastic Clara Cells were noted
within goblet cells (Fig. 7, S/UFP/OVA, arrows).

NAC treatment extensively reduced the described mor-
phological alterations. Over broad ranges of bronchioli
Clara cells displayed normal features. Necrosis appeared
to a striking less degree. Also at the SEM analysis, the
surface of the Clara cells exhibited obvious less vesicular
pattern (Fig. 6 and 7, S/NAC/UFP/OVA).

NAC reduced EC-UFP-induced airway hyperresponsiveness
Airway hyperresponsiveness as measured by body
plethysmography 24 h after OVA challenge showed sig-
nificantly increased enhanced pause (PenH) following

Figure 4 CC16 and TNF-α relative mRNA expression in lung ho-
mogenates. (A) Non sensitized (NS/UFP) and sensitized (S/UFP) mice 
exposed to EC-UFP, and NS/UFP treated with NAC (NS/NAC/UFP); (B) 
sensitized and challenged mice (S/OVA), treated with NAC (S/NAC/
OVA), or exposed to EC-UFP 24 h prior to OVA challenge (S/UFP/OVA), 
and treated with NAC (S/NAC/UFP/OVA). NAC treatment was per-
formed prior to and close to mid EC-UFP exposure. Untreated mice 
served as baseline controls (dotted line). The lungs were retrieved 24 h 
after EC-UFP/filtered air exposure. Data presented as mean ± SD (n = 
3-6/group). *p < 0.05, **p < 0.01 vs untreated; #p < 0.05, ##p < 0.01 NS/
UFP, S/UFP, S/OVA, S/NAC/UFP/OVA vs S/UFP/OVA.
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increasing methacholine concentrations in OVA sensi-
tized animals exposed to EC-UFP prior to OVA challenge
(S/UFP/OVA) compared to untreated; a close to signifi-
cant increase in PenH was shown in comparison with
sensitized and challenged mice exposed to filtered air (S/
OVA). NAC reduced EC-UFP-dependent increase in air-
way hyperresponsiveness (See additional file 1: functional
characterization of the mouse model).

Discussion
Epidemiological and experimental studies suggest that
anthropogenic air pollutants, in particular fine and ultra-
fine particulate matter, are important cofactors in the
development of pulmonary health disorders, including
pulmonary allergic disorders [30,35-37]. Clara cells are
nonciliated secretory epithelial cells lining the pulmonary
airways, whose main function is to protect the respiratory
system from excessive inflammatory reactions [8]. In this
study we investigated functional and morphological alter-
ations of Clara cells in a mouse model of UFP-induced
exacerbation of allergic lung inflammation. Our results
showed that sensitized and challenged mice exposed to
EC-UFP prior to allergen challenge showed a transient
decrease, followed by a late increase of CC16 in BALF
accompanied by a strong increase of CC16 in serum.
BALF total protein concentration was also most
increased in this group, confirming that the exudative
response caused by the increased airway permeability
plays an important role. Similarly to our results, exposure
to cigarette smoke provoked a lower CC16 recovery in

BALF and an increase in CC16 in serum [17]. In this
study, the augmented albumin and total protein recovery
in the BALF confirmed the increased particle-induced
permeability of the lung/blood barrier. Interestingly, a
recent study showed that cigarette smoke decreases tran-
sepithelial resistance resulting in a reduction of the epi-
thelial barrier function [38]. We show similar effects
using allergic mice, where lung injury caused by particle
exposure and by allergic inflammation had synergistic
effects. On the contrary, EC-UFP inhalation in non chal-
lenged non sensitized or sensitized mice had a transi-
tional, though significant effect on CC16 concentrations
in BALF, a significant effect on serum CC16 concentra-
tions, but no effect on total protein recovery in BALF.
Difference in particle characteristics, mainly the low tox-
icity of the relatively inert EC-UFP compared to cigarette
smoke, characterized by a highly reactive gas phase and
organics, might account for these discrepancies.

At the mRNA level, we show that EC-UFP alone stimu-
late CC16 expression in non sensitized and sensitized
mice, independently from allergen challenge. This means
that EC-UFP inhalation alone leads to increased intracel-
lular storage of CC16 protein. While previous studies
have reported that the mRNA level of CC16 in the respi-
ratory tract is reduced after exposure to cigarette smoke,
ozone, diesel exhaust and silicon carbide whiskers min-
eral fibers [17-19,39], the pulmonary response to intratra-
cheal instillation of fine particles showed to increase
CC16 mRNA expression [40]. This latter study is in line
with our results. Altered expression of CC16 in the lung

Figure 5 Morphometrical analysis of volume density of PAS positive material. NS/UFP, S/OVA, S/UFP/OVA and S/NAC/UFP/OVA lungs were re-
trieved 7 days after OVA challenge/EC-UFP inhalation and stained with PAS. (A) Small airways (circumference ≤ 800 μm); (B) Large airways (circumfer-
ence >800 μm), n = 6-12/group. **p < 0.01 vs NS/UFP; ##p < 0.01 vs S/UFP/OVA. Representative samples of lungs stained with PAS showing small 
airways in: (C) Non sensitized mice exposed EC-UFP (NS/UFP); (D) Sensitized and challenged mice exposed to filtered air (S/OVA); (E) Sensitized mice 
exposed to EC-UFP 24 h prior to OVA challenge (S/UFP/OVA); (F) Sensitized mice exposed to EC-UFP 24 h prior to OVA challenge and treated with 
NAC (S/NAC/UFP/OVA). Arrows, mucus hypersecretion; scale bar, 50 μm.
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may depend on its key function. Most importantly, its
anti-inflammatory activities include down-regulation of
interferon-γ and tumor necrosis factor-alpha synthesis
and/or biological activity [9], inhibition of IL-1β and of
phospholipase A2 in the synthesis of arachidonic acid
metabolites [11]. CC16 may therefore contribute to the
regulation of an inflammatory response in the lung [41].
In this study we measured also the expression of TNF-α,
an early-response multifunctional cytokine, produced
mainly by monocytes and macrophages [42], which was
shown to be synthesized in the lung following ultrafine
particle exposure [43,44]. In addition to its pro-inflam-
matory characteristics, TNF-α was shown to stimulate
human CC16 production [12]. In our model, EC-UFP
inhalation alone increased TNF-α expression. Moreover,
allergic inflammation and EC-UFP inhalation had syner-
gistic effects on lung TNF-α expression.

Allergic asthma is a disease characterized by lower anti-
oxidant defenses [22]. The role of Clara cells in asthma is
still controversial. Studies in humans revealed decreased
CC16 levels in BALF and serum of asthmatic patients
compared to healthy individuals [23,25,45], suggesting
that Clara cells may protect the lung against the develop-

ment of the disease. Interestingly, the human gene for
CC16 is localized within a chromosomal locus associated
with regulation of inflammation and allergy [41] and an
association has been found between a polymorphism in
the CC16 gene and an increased risk of developing
asthma [24]. In addition, experimental studies showed a
regulation of the Th2 response by CC16 [26]. On the
other hand, there is increasing evidence that Clara cells
are essential in allergen-induced mucus production in the
airway epithelium and that these cells undergo metapla-
sia to goblet cells, being responsible for the formation of
the mucus plugs which characterize the asthmatic pheno-
type [27,28]. Thus, our mouse model represents a suscep-
tible population to the EC-UFP-induced oxidative stress,
where Clara cells seem to play an important role.

Oxidative stress is said to occur in a tissue or an organ
when the normal balance between oxidants and antioxi-
dants shifts in favor of oxidants, from either an excess of
oxidants and/or depletion of antioxidants. Recently we
have shown increased marker of oxidative stress isopros-
tane following EC-UFP inhalation alone; sensitized mice
exposed to EC-UFP before OVA challenge showed high-
est lung isoprostane concentrations, NF-κB activation

Figure 6 Transmission electron microscopy. Ciliated and non-ciliated (Clara) cells in the peripheral lung of normal control mice (Untreated). Mero-
crine secretions of electron-dense secretory granules (arrows) are recognized in the Clara cell exhibiting many mitochondria and developed smooth 
endoplasmic reticulum. Hyperplastic Clara cells in the lungs of non sensitized mice exposed to EC-UFP, (NS/UFP). The arrow points at a ciliated cell. 
NS/UFP treated with NAC (NS/NAC/UFP). OVA sensitized and challenged mice showing goblet cell metaplasia (S/OVA). Strong ultrastructural dam-
age and detachment of metaplastic cells (arrows) is shown in the peripheral lungs of sensitized mice exposed to EC-UFP 24 h prior to OVA challenge 
(S/UFP/OVA). Clara cells of sensitized mice exposed to EC-UFP 24 h prior to OVA challenge and treated with NAC show preserved ultrastructure with 
secretory granules (arrows), (S/NAC/UFP/OVA). NAC treatment was performed prior to and close to mid EC-UFP exposure. Scale bar, 2 μm.
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and airway hyperresponsiveness [29]. The role of CC16 in
the protection against acute oxidative stress is well
known. In fact, exposure to ozone was shown to increase
serum CC16 concentrations [18] and CC16 -/- gene tar-
geted mice showed increased susceptibility to hyperoxic
injury and exaggerated inflammatory response compared
to wild types [20,21]. In order to assess the role of oxida-
tive stress in EC-UFP-induced alteration of Clara cells
and CC16 concentration, we used NAC, a well-known
thiol compound which acts directly as a free radical scav-
enger [46] and as a precursor of reduced glutathione
(GSH) [47]. We chose NAC because it is relative innocu-
ous, it has been widely used both in vitro and in vivo and
it possess a short half life, therefore the antioxidant capa-
bilities of NAC were limited only to the duration of EC-
UFP exposure [48]. Our results show that EC-UFP-

induced alterations of CC16 concentrations were signifi-
cantly reduced by NAC treatment, indicating the role of
oxidative stress in the induction of CC16 release. Simi-
larly, the antioxidant strategy reduced TNF-α mRNA
expression in whole lung homogenate. On the contrary,
NAC did not reduce significantly CC16 mRNA expres-
sion, implying that the regulation of CC16 by NAC may
function at the post-transcriptional level. The effect of
NAC on CC16 concentrations in serum was slightly more
inconsistent than in BALF. This could be explained by the
large gradient across the air/blood barrier, where a small
variation in CC16 concentration in BALF can cause large
variations in serum CC16 concentrations. Previous stud-
ies showed that NAC enhanced the production of CC16
in a mouse allergy model, a possible mechanism by which
it may suppress airway inflammation [49]. In our model

Figure 7 Scanning electron microscopy. Ciliated and non-ciliated (Clara) cells (arrows) in the bronchiolar epithelium of normal control mice (Un-
treated). Hyperplastic Clara cells in the lungs of EC-UFP-exposed non sensitized (NS/UFP) and sensitized mice (S/UFP). NAC treatment preserved 
Clara cell morphology (S/NAC/UFP). OVA sensitized and challenged mice showing goblet cell metaplasia (arrows, S/OVA). Highly hyperplastic Clara 
cells (arrows) between mucous cells in the bronchiolar epithelium of sensitized mice exposed to EC-UFP 24 h prior to OVA challenge (S/UFP/OVA). 
NAC treatment preserved Clara cell morphology (S/NAC/UFP/OVA). NAC treatment was performed prior to and close to mid EC-UFP exposure. Scale 
bar, 5 μm.
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NAC had minor effects on lung CC16 concentrations of
sensitized and challenged mice maybe because our model
reproduces a mild allergic inflammation of the lung, as
shown by the data on inflammatory cells, cytokines and
airway hyperresponsiveness (See additional file 1: func-
tional characterization of the mouse model). On the con-
trary, we show strong effects of NAC upon EC-UFP
exposure.

Transmission and scanning electron microscopy served
to investigate UFP-induced morphological alterations in
Clara cells. EC-UFP are found in the ultrafine size range
(<100 nm), which when inhaled, readily penetrate the
lower respiratory tract [50]. However, we did not detect
particles within Clara cells as we recently observed in
other types of epithelial cells [29]. Thus, the morphologi-
cal and functional alterations of Clara cells which we
observed is most likely a consequence of particle indirect
effects, such as alterations of inflammatory mediators in
the lung lining fluid. Ultrastructural alterations of Clara
cells were also shown following exposures to air pollut-
ants such as ozone and tobacco smoke [21,51]. Acute
injury to Clara cells induced by ozone exposure caused
hyperplasia and loss of secretory granules [52]. Studies on
CC16 -/- mice showed that CC16 is required for the
appearance of Clara cells secretory granules [53]. These
studies suggest an important role for Clara cells and oxi-
dant-induced secretion of CC16 as an immediate protec-
tive response to oxidative injury. Surprisingly, we showed
hyperplasia of Clara cells (but no goblet cell metaplasia)
following inhalation of relatively inert particles, such as
EC-UFP. Sensitized and challenged mice exposed to fil-
tered air were characterized by increased numbers of
mucous cells derived by Clara cell metaplasia, as previ-
ously described [28]. In the morphometrical analysis of
PAS positive material we showed that this phenomenon
was significant only in the large airways. Interestingly,
sensitized and challenged mice exposed to EC-UFP prior
to challenge showed increased goblet cell metaplasia
induced by EC-UFP exposure only in the small airways, in
contrast to large airways. One explanation could be based
on predominant ultrafine particle deposition in smaller
compared to larger airways due to the velocity profiles
generated in the airways by high frequency breathing in
rodents and the increased residence time of particles in
small structures favouring deposition by diffusional dis-
placement [54,55]. Electron miscroscopy shows most
dramatic alterations of Clara cell ultrastructure in this
group, characterized by extreme hyperplasia, metaplasia
with complete loss of secretory granules and necrosis. We
show that oxidative stress plays an important role, since
NAC treatment is able to limit goblet cell metaplasia and
protect Clara cell ultrastructure.

Conclusion
Our study demonstrates the role of oxidative stress on
Clara cell function and morphology in a mouse model of
allergic inflammation of the lung. In healthy animals,
Clara cells showed to contribute to the local needs upon
cell damage caused by EC-UFP-induced oxidative stress.
In allergic animals, the combination of goblet cell meta-
plasia, with associated mucus hypersecretion, and
reduced host defence seems a disastrous pathophysiolog-
ical combination, where the invoked compensatory
mechanisms seem to be insufficient. For asthmatics, par-
ticle exposure would then exacerbate the already existing
difficulty to counteract reactive oxygen species. Our data
support the concept that allergic individuals are more
susceptible to the adverse health effects of EC-UFP.
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