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Abstract
Background: Exposure to small size particulate matter in urban air is regarded as a risk factor for
cardiovascular effects, whereas there is little information about the impact on the cardiovascular
system by exposure to pure carbonaceous materials in the nano-size range. C60 fullerenes are nano-
sized particles that are expected to have a widespread use, including cosmetics and medicines.

Methods: We investigated the association between intraperitoneal injection of pristine C60
fullerenes and vasomotor dysfunction in the aorta of 11–13 and 40–42 weeks old apolipoprotein E
knockout mice (apoE-/-) with different degree of atherosclerosis.

Results: The aged apoE-/-mice had lower endothelium-dependent vasorelaxation elicited by
acetylcholine in aorta segments mounted in myographs and the phenylephrine-dependent
vasoconstriction response was increased. One hour after an intraperitoneal injection of 0.05 or 0.5
mg/kg of C60 fullerenes, the young apoE-/- mice had slightly reduced maximal endothelium-
dependent vasorelaxation. A similar tendency was observed in the old apoE-/- mice. Hampered
endothelium-independent vasorelaxation was also observed as slightly increased EC50 of sodium
nitroprusside-induced vasorelaxation response in young apoE-/- mice.

Conclusion: Treatment with C60 fullerenes affected mainly the response to vasorelaxation in
young apoE-/- mice, whereas the vasomotor dysfunction in old apoE-/- mice with more advanced
atherosclerosis was less affected by acute C60 fullerene treatment. These findings represent an
important step in the hazard characterization of C60 fullerenes by showing that intraperitoneal
administration is associated with a moderate decrease in the vascular function of mice with
atherosclerosis.
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Background
The increasing use of nanomaterials warrants a thorough
understanding of the hazards of the environment and
man [1]. C60 fullerenes are spherical molecules with a
diameter of around 1 nm, comprising 60 carbon atoms
arranged in a truncated icosahedron structure similar to a
soccer ball. C60 fullerenes have already been marketed in
cosmetics, whereas their cage like structures are being
developed e.g. for drug delivery with surface modification
for targeting properties including cancer and antimicro-
bial activity. Multiple other applications can be envisaged,
although widespread commercial use of C60 fullerenes is
still in the future [2].

In keeping with the notion that exposure to particulate
matter in air pollution is associated with increased risk of
cardiovascular diseases, engineered nanomaterials are
expected to generate similar effects [3]. The detrimental
effects on the cardiovascular system of particulate matter
in the small size range include altered activity of the fibri-
nolytic system, a procoagulant state, endothelial dysfunc-
tion, and cardiac effects [3-5]. Of special interest is the
studies showing that airway exposure to concentrated
ambient particles and single wall carbon nanotubes can
promote progression of the atherosclerosis process in
apolipoprotein E knockout mice (apoE-/-) that develop
plaques in blood vessels at early age [6-8]. Similarly, pul-
monary exposure to nano-sized carbon black is associated
with accelerated plaque area development in the aorta of
low-density lipoprotein receptor knockout mice that are
also predisposed to atherosclerosis [9]. In addition, stud-
ies relating exposure to particulate matter by exposure to
air pollution or diesel exhaust particles have shown
increased area of atherosclerotic lesions in the aorta of
Watanabe heritable hyperlipidemic rabbits [10,11].

The endothelium plays an important role in maintaining
the vascular homeostasis by producing vasoactive factors
that regulate the tone of the vascular system in response to
cell surface receptor stimulation or mechanical stress [12].
In the functional endothelium, acetylcholine (ACh) bind-
ing to muscarinic receptors on the luminal surface is asso-
ciated with the generation of nitric oxide (NO) by
endothelial nitric oxide synthase (eNOS). The NO subse-
quently diffuses into the smooth muscle cells and facili-
tates the relaxation of the vessel. In experimental settings,
the endothelium-independent vasorelaxation can be stud-
ied by NO-donors such as sodium nitroprusside (SNP). In
contrast, the phenylephrine (PE) mediated vasoconstric-
tion is mediated by binding to α1-adrenoceptors on the
smooth muscle cells. Endothelial dysfunction is believed
to be an event that leads to atherosclerosis as well as being
a marker of the severity of atherosclerosis [13]. In apoE-/-

mice, the vasomotor function is inversely correlated with
the plaque-size, whereas it is not affected by hypercholes-

terolemia [14]. In apoE-/- mice, the acetylcholine-induced
vasorelaxation was decreased and the PE-induced maxi-
mal vasoconstriction was enhanced after 5 months inha-
lation exposure to concentrated air pollution particles
although this could be due to much further progressed
aortic plaque development [6,8]. A number of studies
have shown acute effects of particle exposure on vascular
functions. E.g. ultrafine TiO2 particles were more potent in
inducing systemic microvascular dysfunction in rats after
exposure than fine TiO2 particles after inhalation at doses
with minimum pulmonary effects [15]. We have shown
that systemic exposure to diesel exhaust particles by intra-
peritoneal (i.p.) injection reduced acetylcholine-elicited
vasorelaxation in apoE-/- mice with minimum atheroscle-
rosis, whereas opposite effects were seen in wild type mice
[16].

Research concerning the effect of nanomaterials on the
vascular function is still very sparse. The effect of C60
fullerenes or derivatives on vascular function has only
been investigated in a few studies and only in ex vivo expo-
sure designs. It has been shown that the endothelium-
dependent relaxation of rabbit thoracic aorta segments is
affected by water-soluble monomalonic acid-modified
C60 fullerenes, whereas the PE-induced vasoconstriction
was unaffected [17,18]. Water-soluble C60(OH)24 fuller-
enes have been shown to induce the endocytotic uptake of
oxidized low-density-lipoproteins in macrophages and
stimulate ADP-induced platelet aggregation [19]. To the
best of our knowledge no data on vasomotor function fol-
lowing in vivo exposure to C60 fullerenes have been pub-
lished.

The purpose of this study was to investigate the effect of
systemic exposure to pristine C60 fullerenes by i.p. injec-
tion on the vascular function in apoE-/- mice with varying
degree of atherosclerosis. I.p. injection of C60 fullerenes
has been used in some investigations as a route of expo-
sure in order to focus on C60 fullerene's ability to prevent
toxic effects of carbon tetrachloride [20] and metham-
phetamine and morphine [21]. We used the i.p. route of
exposure and 1 hour post-treatment time similarly to our
previous study on diesel exhaust particles in order to
investigate direct systemic vascular effects unrelated to
inflammatory responses [16]. The i.p. route allows a rela-
tively slow systemic dose rate which would be difficult to
achieve with i.v. injection and it is also similar to intra-
muscular or subcutaneous administration or even dermal
uptake or translocation from the airways. We hypothe-
sized that exposure to C60 fullerenes would affect the vas-
omotor function in aorta vessels with atherosclerosis in a
similar way as diesel exhaust particles are associated with
microvascular dysfunction.
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Results
Characteristics of atherosclerosis and vasomotor function 
in apoE-/- mice
We used apoE-/- mice of different age in order to test mice
with different extents of aortic plaque development. In
two mice aged 40–42 weeks the plaque area was assessed
(figure 1). The plaque area in the aortic arch was 52% and
66%, whereas in the more distal part of the aorta the
plaques comprised an area of 4% and 8%, respectively. In
the whole aorta the plaques covered an area of 12% and
19% in the two mice, respectively.

The primary aim of the study was to investigate the effect
of C60 fullerenes at different stages of atherosclerosis by
using apoE-/- mice with different age. We carried out a
small pilot study on 40–42 weeks old male apoE-/- mice in
order to assess whether or not it was possible to measure
particle-induced differences in the vascular function in
aorta segments highly covered with atherosclerotic
plaques. This pilot study indeed indicated that especially
the endothelium-dependent dysfunction in the segments
of aortic arch from aged male mice was severely affected
(figure 2).

Effect of C60 fullerenes on the vasomotor function
Endothelium-dependent vasorelaxation
The Emax values of the acetylcholine-dependent vasorelax-
ation were significantly lower for both the low and the
high dose of C60 fullerene treated female mice than for the
controls (58.7% (95% CI: 52.9–64.4%) and 60.0% (95%
CI: 55.9–64.2%) versus 70.8% (95% CI: 65.0–76.5%),
respectively; figure 3, table 1). A similar pattern was
observed in the old female mice; the Emax value was signif-

icantly lower in the group of mice that had received 0.05
mg/kg C60 fullerenes (37.8% (95% CI: 32.6–43.0%))
compared to the control group (60.4% (95% CI: 53.2–
67.6%)), whereas the Emax value for the high dose exposed
group was reduced (47.3% (95% CI: 38.6–56.0%))
although the difference was not quite statistically signifi-
cant at a 5% level. There was no effect of C60 fullerene
treatment in the old male apoE-/- mice, which is likely to
be because of the pre-existing poor vasomotor function in
the segments obtained from these mice.

Endothelium-independent vasorelaxation
The SNP-induced vasorelaxation was shifted toward a
reduced responsiveness in young apoE-/- mice treated with
0.5 mg/kg of C60 fullerenes compared with the 0 mg/kg
exposed group (figure 4, table 1). This was evident from
the EC50 value (16.5 nM (95% CI: 13.4–20.3 nM) which
was significantly increased compared to the control group
(10.1 nM (95% CI: 8.1–12.6 nM). The EC50 for mice
treated with the lower dose was slightly increased (15.7
nM (95% CI: 11.2–22.0 nM), although this was not statis-
tically significant at a 5% level. The EC50 values for the low
or high dose exposed old mice of both sexes exhibited no
significant differences from the corresponding control val-
ues. For all groups of mice, there was no statistically sig-
nificant effect of C60 fullerenes on the SNP-induced
maximal endothelium independent vasorelaxation
(Emax), although the small group of old male mice
appeared to show a decrease in Emax.

Receptor-dependent vasoconstriction
There were no significant effects of C60 fullerene treatment
on the EC50 or Emax values of PE-induced vasoconstriction
(figure 5, table 1).

Discussion
In this study we showed that systemic treatment with C60
fullerenes in apoE-/- mice was associated with reduced
vasorelaxation responses indicating that treatment with
pristine C60 fullerene nanoparticles alters the balance of
the vasomotor functions.

Treatment with C60 fullerenes at a dose of 0.05 mg/kg
resulted in significantly lower Emax values of the acetylcho-
line-induced relaxation of aorta segments in both young
and old apoE-/- mice. A similar tendency was also
observed for the greater dose (0.5 mg/kg), although it
only reached statistical significance in the group of young
apoE-/- mice: this might be due to a slightly smaller varia-
tion in that group. The old male apoE-/- mice were only
exposed to 0.5 mg/kg of C60 fullerenes as part of a pilot
study to assess the reliability of vasomotor function tests.
The assessment of the vasomotor function in aorta rings
of the arch of the vessel of the male apoE-/- mice were
unsatisfactory because the results were rather variable and

Digital microscope images of the intimal surface of the aorta from the ascending aorta to the femoral arteries, dissected from two 40–42 weeks old female apoE-/- miceFigure 1
Digital microscope images of the intimal surface of 
the aorta from the ascending aorta to the femoral 
arteries, dissected from two 40–42 weeks old female 
apoE-/- mice. The atherosclerotic plaques are discernible as 
white areas of the light grey background of normal aorta. 
The plaque area was determined by means of digital micro-
scope images on which the plaque-area was determined with 
a Leica imaging program IM50 (Leica Microsystems Imaging 
Solutions). The scale bars represent 1 cm.
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Vascular function in aorta segments from the control groups of young and old apoE-/- miceFigure 2
Vascular function in aorta segments from the control groups of young and old apoE-/- mice. The aorta segments 
originated from the aortic arch and descending aorta in the young and old female mice, respectively. In the old male apoE-/- 

mice, the vascular function was analyzed in aorta rings from the arch. # and * denotes statistically significant differences in EC50 
and Emax, respectively, observed for the aged control groups as compared with the young control group (P < 0.05, ANOVA 
with unequal variance between groups).
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Endothelium-dependent vasorelaxation of aorta segments from apoE-/- mice treated with C60 fullerenes by i.p. injectionFigure 3
Endothelium-dependent vasorelaxation of aorta segments from apoE-/- mice treated with C60 fullerenes by i.p. 
injection. The response is expressed as the percent relaxation of the precontraction tension produced by prostaglandin 2α. 
Each point on the curves represents the cumulative response at each concentration of acetylcholine (ACh). The data are 
expressed as the mean and SEM. * denotes a significant effect on Emax compared to the control group (P < 0.05, ANOVA with 
unequal vaiance between groups).
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the endothelium-dependent vasorelaxation was severely
affected, although a decrease in Emax of the endothelium-
independent vasorelaxation was suggested for SNP. In
addition, the results for the male mice are inconclusive
because the few animals per group are associated with low
statistical power. For the main experiment in female apoE-

/- mice we therefore used the more distal portion of the
aorta for the investigation of the vasomotor function. This
means that it is difficult to directly compare vasomotor
response in the young and old female apoE-/- mice
because the aortic arch and the more distal part of the
descending aorta have different vascular architecture and
atherosclerotic progression. The data observed in this
investigation are in keeping with our previous study on
the effect of i.p. injection of diesel exhaust particles, which
we found to deteriorate the endothelium-dependent ace-
tylcholine-response, whereas the EC50 and Emax values of
the SNP-response could not be estimated because sigmoid
concentration-response curves were not obtained [17].
This was achieved in the present study possibly by adding
two low concentrations of SNP and allowing more time
for each response to reach a steady state. NO is released
intracellularly by metabolism of SNP and it is thus diffi-
cult to assess whether the reduced relaxation is due to
interference with the metabolism or downstream signal-
ling. Comparison with other NO donors such as diethyl-
amine NONOate or spermine NONOate, which release
NO directly, together with NO-independent vasodilators
(e.g. calcium channel blocker), would be required for fur-
ther understanding. In contrast to the dysfunction of the
vasorelaxation, vasoconstriction does not appear to be
affected by C60 treatment. The unaltered effect of the vaso-

constriction is not likely to be due to insensitivity of the
method because the order in which the segments were
mounted in the myograph and used in the different con-
centration-response experiments was fixed with regard to
distance from the heart in order to reduce the variation
between experiments. It is possible that there may have
been a difference in sensitivity to particle exposure along
the length of the aorta, but as the segments used for the PE
experiments were always dissected from a slightly more
proximal part of the aorta than the segments used in the
acetylcholine experiments, this should if anything have
led to a higher sensitivity of the segments used in the PE
experiments than in the segments used in the acetylcho-
line experiments. Generally, the data reported here indi-
cate that the balance between vasorelaxation and
vasoconstriction is shifted towards the latter. A direct con-
sequence of this unbalance in the vasomotor function is
increased stiffness of the vessels as has been shown in
mesenteric arteriolar vessels of aged apoE-/-mice [22].

Oxidative stress is considered to be an important mecha-
nism of action describing the toxic effect of particulate
matter [23,24]. Biomarkers of oxidative stress, including
oxidation products of biomolecules such as oxidatively
modified DNA base lesions have been found in target tis-
sue of animals and in blood cells and urine of humans as
well as in in vitro models in relation to particulate matter
and especially nanoparticles [25]. Particle-generated oxi-
dative stress may arise as a consequence of direct genera-
tion of reactive oxygen species on the surface of the
particles or indirectly by particle-elicited inflammatory
reactions [23]. It seems unlikely that the alteration in the

Table 1: EC50 and Emax values of concentration-response curves performed for phenylephrine (PE), acetylcholine (ACh) and sodium 
nitroprusside (SNP) on 11–13 weeks female (F), 40–42 weeks female (F) and 40–42 weeks male (M) apoE-/- mice.

Dose of C60 
fullerenes

EC50 (nM) Emax (%)

11–13 weeks (F) 40–42 weeks (F) 40–42 weeks (M) 11–13 weeks (F) 40–42 weeks (F) 40–42 weeks (M)

Vasoconstriction (PE)
0.00 mg/kg 9.0 (7.6–10.8) 31.4 (23.6–41.7)¤ 6.4 (5.5–7.3)¤ 72.9 (70.4–75.4) 65.6 (61.2–69.9)¤ 71.3 (69.8–72.7)
0.05 mg/kg 8.7 (6.8–11.1) 31.7 (25.2–39.8) ND 72.4 (69.1–75.6) 71.1 (67.2–75.1) ND
0.50 mg/kg 8.1 (6.6–10.0) 38.9 (33.7–44.9) 6.8 (5.3–8.7) 73.7 (70.9–76.4) 69.5 (67.0–72.0) 67.0 (64.3–69.8)*
Endothelium-dependent vasorelaxation (Ach)
0.00 mg/kg 44.3 (29.3–66.9) 32.7 (17.6–66.6) 161.6 (25.8–1022) 70.8 (65.0–76.5) 60.4 (53.2–67.6) 26.7 (13.0–40.4)¤

0.05 mg/kg 44.7 (27.4–72.8) 10.5 (4.7–23.4) ND 58.7 (52.9–64.4)* 37.8 (32.6–43.0)* ND
0.50 mg/kg 52.6 (38.6–71.8) 19.7 (6.9–56.1) 148.4 (7.7–2847) 60.0 (55.9–64.2)* 47.3 (38.6–56.0) 34.4 (4.9–41.9)
Endothelium-independent vasorelaxation (SNP)
0.00 mg/kg 10.1 (8.1–12.6) 19.9 (14.4–27.4)¤ 22.9 (15.8–33.1)¤ 93.2 (90.1–96.3) 82.3 (77.8–86.8)¤ 70.3 (65.4–75.2)¤

0.05 mg/kg 15.7 (11.2–22.0) 13.6 (8.2–22.5) ND 86.6 (81.9–91.2) 80.2 (73.7–86.7) ND
0.50 mg/kg 16.5 (13.4–20.3)* 20.9 (16.3–26.8) 20.3 (10.6–39.2) 88.3 (85.1–91.6) 83.3 (79.6–87.0) 58.5 (52.2–66.8)

The data are expressed as mean and 95% CI. The vasomotor function in the group of 0.05 mg/kg bodyweight was not determined (ND) in the male 
mice. * denotes statistically significant effects on EC50 or Emax as compared to the effect in the control group (P < 0.05, ANOVA with unequal 
variance between groups). ¤ denotes statistically significant differences in EC50 or Emax, observed for the aged control groups as compared with the 
young control group (P < 0.05, ANOVA with unequal variance between groups).
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Endothelium-independent relaxation of aorta segments from apoE-/- mice treated with C60 fullerenes by i.p. injectionFigure 4
Endothelium-independent relaxation of aorta segments from apoE-/- mice treated with C60 fullerenes by i.p. 
injection. The response is expressed as the percent relaxation of the precontraction tension produced by PGF2α. Each point 
on the curve represents the cumulative response at each concentration of sodium nitroprusside (SNP). The data are expressed 
as the mean and SEM. # denotes a significant effect on EC50 compared to the control group (P < 0.05, ANOVA with unequal 
variance between groups).
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Receptor-dependent vasoconstriction of aorta segments from apoE-/- mice treated with C60 fullerenes by i.p. injectionFigure 5
Receptor-dependent vasoconstriction of aorta segments from apoE-/- mice treated with C60 fullerenes by i.p. 
injection. The response is expressed as the percent of the maximal contraction induced by stimulation with a cocktail of K+-
PSS, PGF2α and U-46619. Each point on the curve represents the cumulative response at each concentration of phenylephrine 
(PE). The data are expressed as the mean and SEM. * denotes a significant effect on Emax compared to the control group (P < 
0.05, ANOVA with unequal variance between groups).
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vascular function in our study was elicited by C60 fuller-
ene-generated inflammatory reactions because the post-
treatment period was only one hour and the inflamma-
tory potential of C60 fullerenes appears to be modest [26].
However, we have shown that our batch of pristine C60
fullerenes can generate reactive oxygen species in aqueous
solution as well as within cultured cells, although the con-
centration-response relationship was bell-shaped [27]. It
is thus possible that the direct presence of C60 fullerenes in
the vessel wall is associated with increased generation of
reactive oxygen species. This would imply translocation of
C60 fullerenes to the circulation. In a previous study on
diesel exhaust particles we observed that the treated mice
had particulate matter in lymph nodes of the head/neck
region, which could have originated from both trapping
of free particulate matter in the lymph node or migration
of macrophages containing engulfed particulate matter
[28]. However, most studies have focussed on the translo-
cation of particulate matter from the lungs to the circula-
tion and the most recent, employing impeccable
methodology, indicate very little translocation of particu-
late matter [29-32]. Although we do not have final proof
of any extent of C60 fullerenes translocation, our data sug-
gest that particulate matter in the peritoneum reaches the
circulation and directly affects vascular function. Our
results on the endothelium-dependent vasorelaxation are
in accordance with a previous investigation on ex vivo
treatment of rabbit thoracic aorta segments with water-
soluble monomalonic acid derivative of C60 fullerenes
that was associated with a decrease in the endothelium-
dependent vasorelaxation, whereas the SNP-induced
endothelium-independent relaxation and PE-induced
vasoconstriction was not affected in those studies [17,18].
The difference between this and our SNP-response may be
due to a number of differences in the experimental setups,
such as the use of ex vivo or in vivo exposure conditions,
modified or pristine C60 fullerenes and/or the use of aorta
from normal rabbits or from mice with atherosclerosis. In
the studies utilizing rabbit aorta, addition of superoxide
dismutase alleviated the endothelium dysfunction caused
by the monomalonic derivative of C60 fullerenes, which
indicates that the mechanism of action involves the gen-
eration of superoxide anions [17]. It is well-known that
superoxide anions react with NO leading to the formation
of peroxynitrite, a highly oxidizing species that forms 3-
nitrotyrosine in a reaction with proteins [33]. This prod-
uct was observed in aorta from apoE-/- mice following
exposure to air pollution particles, where the exposure
was associated with increased PE-induced vasoconstric-
tion and lower responsiveness of acetylcholine-induced
vasorelaxation [8]. However, besides the generation of
superoxide anions other scavenging of NO could also
impair vasorelaxation, and C60 fullerenes may have more
complicated mechanisms of action in this respect. For
instance, it has been reported that hexasulfobutylated C60

fullerenes potentiated the endothelium-dependent
vasorelaxation in aorta segments from guinea pigs [34]. In
addition, it has been reported that other derivatives of C60
fullerenes (called C3- or D3-tris-malonyl-C60-fullerene)
inhibited the activity of eNOS and C3-tris-malonyl C60
fullerenes, which had the largest hydrophobic surface
area, inhibited eNOS the most [35]. This is an effect which
could be predicted to inhibit the acetylcholine-dependent
vasorelaxation of the aorta. Collectively, the data obtained
so far from miscellaneous C60 fullerenes suggest that it is
difficult to draw general conclusions based on extrapola-
tion from a single type of particle. In addition, it is likely
that the dose of C60 fullerenes is an important issue to
consider.

Our data fit with a general picture observed following
treatment with air pollution particles in mice where it has
been shown that intratracheal instillation of ambient par-
ticulate matter was associated with reduced maximal ace-
tylcholine-response and there was no change in
vasoconstriction induced by PE [36]. In contrast, it has
been shown that intratracheal instillation of ambient par-
ticulate matter in spontaneous hypertensive rats was asso-
ciated with increased acetylcholine-dependent
vasorelaxation and no effect related to PE-induced vaso-
constriction [37]. It is possible that differences in the pre-
existing conditions and/or species can explain the
discrepancy in the acetylcholine-induced vasorelaxation.
In addition, long-term exposure to concentrated ambient
particles was associated with altered vasomotor function
in terms of both vasorelaxation and vasoconstriction,
although this might partly be explained by particle-
induced acceleration of atherosclerosis because the mice
exposed to particulate matter exhibited a larger area of
aorta covered with plaques [8]. In healthy humans, short
bouts of exposure to air pollution particulate matter was
associated with vascular impairment of vasorelaxation
[38-42]. However, it is interesting that among patients
with prior myocardial infarction, exposure to diesel
exhaust did not aggravate pre-existing vasomotor dysfunc-
tion of endothelium-dependent or endothelium-inde-
pendent vasorelaxation [43]. The results from our
investigation calls attention to the possible detrimental
effect of low doses of C60 fullerenes in humans consider-
ing that exposure to the C60 particles elicits a similar pat-
tern of vascular motor-function effect related mainly to
the endothelial cells whereas a direct effect on the smooth
muscle cells is less pronounced.

The exposure concentrations of pristine C60 fullerenes in
the environment, consumer products or drugs are still
largely unknown. The highest dose of C60 fullerenes (0.5
mg/kg bodyweight) in the present experiment was chosen
because we have previously found this dose to be associ-
ated with the largest effect in terms of endothelial dys-
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function by exposure to diesel exhaust particles by the
same route of exposure [16]. The maximum effect of the
C60 fullerenes appeared to be attained already at 0.05 mg/
kg in the present investigation. However, the effect was
only a 15–30% reduction in the maximal endothelium-
dependent relaxation and a 50–60% increase in EC50 of
the SNP response, which might have limited impact on
the risk of development of cardiovascular disease. In a
recent study on inhalation exposure in rats with the
cumulated dose of about 0.3 mg/kg (assuming the rats
weighed 250 g), there was minimal pulmonary toxicity,
whereas the C60 fullerene treated group showed weak
signs of hepatic effects and the creatine kinase concentra-
tion in serum was increased suggesting subtle toxic effects
to the myocardium [44]. We believe that the lowest dose
in the present experiment (0.05 mg/kg bodyweight) is
rather modest, although it is difficult to provide a reason-
able dose-justification since we have no reliable informa-
tion about exposure to humans. It appears that the doses
of C60 fullerenes, which have been used in other in vivo
studies by the same route of exposure, have been one (3.5
and 7.0 mg/kg bodyweight; [45] and two (30 and 100 mg/
kg bodyweight; [21] orders of magnitude larger than the
doses used in this experiment.

Conclusion
Our study indicate that systemic exposure to C60 fuller-
enes by intraperitoneal injection at low doses can disturb
the vasomotor balance toward a reduced vasorelaxation in
apoE-/- mice, which are hyperlipidemic animals prone to
develop atherosclerotic lesions resembling those observed
in humans. We therefore advise that caution should be
exercised when these and similar nanomaterials are used
in nanomedicine and other parental administrations.

Methods
Animals
The apoE-/- (C57BL/6-Apoe tm1) mice were purchased
from Taconic MB (Ejby, Denmark) at the age of 5–8
weeks. They were housed in cages with a 12 h day-night
cycle and were provided with unlimited access to standard
mouse chow (Standard Altromin no.1314, Lage, Ger-
many) and tap water. The mice were exposed to pristine
C60 fullerenes at the age of 11–13 or 40–42 weeks. We
have previously observed that the plaque area was about
1% of the total aorta in apoE-/- mice at the age of 11–13
weeks [16]. In this study, we assessed the level of athero-
sclerosis in the aorta of two apoE-/- females at the age of
40–42 weeks by means of digital microscope images on
which the plaque-area was determined with a Leica imag-
ing program IM50 (Leica Microsystems Imaging Solu-
tions). For the main experiment we used female mice. In
the first experiment we investigated the effect of C60 fuller-
enes in segments from the aortic arch of young female
apoE-/- mice. Subsequently, we also carried out a small

pilot experiment with 40–42 weeks old male mice
exposed to C60 fullerenes in order to assess whether or not
it was possible to obtain reliable measurements of the vas-
cular function in the aortic arch from aged apoE-/- mice.
Male apoE-/- mice were used for this, because they were
extra animals that had not been used in other experiments
and were available at the time of this investigation. In
addition, it has been shown that male and female apoE-/-

mice had similar lesion size and composition at 48 weeks
of age [46]. Based on the results from the study with the
old male apoE-/- mice, we decided to measure the vascular
function on segments obtained from the middle part of
the thoracic aorta, which was less covered with atheroscle-
rotic plaques. Institutional guidelines for animal welfare
were followed and the Danish Ethical Committee for Ani-
mal Studies approved the animal experiments.

Particles
The sample of pristine C60 fullerene was 99.9% pure with
a declared primary particle size is 0.7 nm (Sigma Aldrich,
Denmark). We have previously reported an analysis on
the particle characteristics of this batch of pristine C60
fullerenes: the BET surface area of the preparation is less
than 20 m2/g and it generates low amounts of reactive
oxygen species in aqueous solution [27]. The particles
were suspended by sonication in a solution containing
90% sterile, isotonic saline and 10% bronchoalveolar lav-
age fluid. The latter was prepared by flushing the lungs of
unexposed apoE-/- mice twice with 0.6 ml isotonic saline.
The particle suspensions were sonicated on ice using a
Branson Sonifier S-450D (Branson Ultrasonics Corp.,
Danbury, CT, USA) equipped with a disruptor horn
(Model number: 101-147-037). It was operated under the
following settings: total sonication time 15 min, alternat-
ing with a 55 s pulse ON and a 5 s pause and amplitude
of 10%. Control solutions were prepared containing 90%
isotonic saline and 10% bronchoalveolar fluid from apoE-

/- mice. The solutions were divided in aliquots and imme-
diately frozen at -80°C until use. The solutions were
thawed at room temperature prior to use. Analysis of the
particle size in suspension showed that the majority of the
C60 fullerenes existed as agglomerates that were larger
than 1 μm in diameter; we could not detect nano-sized
C60 fullerenes in the solution because of the agglomera-
tion [26].

Administration of C60 fullerenes
The mice were given C60 fullerenes by i.p. injection and
were killed 1 hour later. The female mice received 0, 0.05
or 0.5 mg/kg bodyweight of C60 fullerenes (n = 9–11 per
group), whereas only the largest dose was administrated
in the pilot experiment with the old male mice (n = 5 per
group). The mice were killed under general anaesthesia
with Hypnorm-Dormicum by asphyxiation. The heart
and aorta were carefully dissected and placed in ice cold
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oxygenated physiological saline solution (PSS: 119 mM
NaCl, 25 mM NaHCO3, 4.7 mM KCL, 1.18 mM KH2PO4,
1.17 mM MgSO4·7H2O, 1.5 mM CaCl2·2H2O, 0.027
mM ethylene diamine tetraacetic acid and 5.5 mM glu-
cose, pH = 7.4). The surrounding connective tissue was
removed and the aorta was cut in segments of approxi-
mately 1.5 mm in length starting from immediately after
the three large side branches of the aortic arch (young
female and old male mice) or in the more distal descend-
ing aorta (old female mice).

Vasomotor function
Three aorta segments from each mouse were mounted on
steel pins with a diameter of 150 μm in the organ baths of
the myograph (multi Myograph 610 M from Danish Myo
Technology, Aahus, Denmark) containing 5 ml cold oxy-
genated PSS continuously perfused with a 95% O2 and 5%
CO2 gas mixture. The order in which the aorta segments
were mounted in the organ baths was randomized with
regard to exposure-group but in order to reduce unneces-
sary variation the segments were mounted in a fixed order
with regard to the specific concentration-response experi-
ment they were used in. The segment used in the SNP
experiment was the most proximal (closest to the heart),
the segment distal to this was used in the phenylephrine
experiment and the segment distal to this was used in the
acetylcholine experiment. The myograph was connected
to a computer and the data were processed by the PC-pro-
gram Myodaq (Danish Myo Technology, Aarhus, Den-
mark). The temperature in the organ baths was slowly
raised to 37°C and the segments were allowed to equili-
brate for 30 min. A standard normalization procedure was
performed in which the vessels were stretched to their
optimal lumen diameter (l1) in order to ensure an optimal
development of active tension in the aorta segments. The
optimal lumen diameter was calculated by the Myodaq
program from a standard curve (l1 = 0.9*l100) estimated by
recording the tonus in the aorta segments while increasing
the mechanical stretching in a stepwise manner. The value
l100 is the diameter of the vessel at the physiological trans-
mural pressure of 13.3 kPa. The vessels were subsequently
allowed to equilibrate for 30 min. Next the aorta segments
were contracted by substituting the PSS in the organ baths
with 5 ml warm, oxygenated 125 mM K+-PSS (119 mM
KCl, 25 mM NaHCO3, 4.7 mM KCL, 1.18 mM KH2PO4,
1.17 mM MgSO4·7H2O, 1.5 mM CaCl2·2H2O, 0.027
mM ethylene diamine tetraacetic acid and 5.5 mM glu-
cose, pH = 7.4) for approximately 10 min before washing
4 times with PSS. This was repeated for a total of three
times to verify viability of the aorta segments, reproduci-
bility of contractions and to deplete the sympathetic nerve
endings of neurotransmitters, noradrenaline in particular.

The endothelium-dependent vasorelaxation was assessed
as acetylcholine concentration-response curves in experi-

ments where the aorta segments had been precontracted
with 1–6 μM prostaglandin F2α (PGF2α, Dinolytic vet. 5
mg/ml from Pharmacia NV/SA, Puurs, Belgien) before
adding increasing concentrations of acetylcholine (Sigma-
Aldrich Chemie Gmbh, Schelldorf, Germany) in a step-
wise manner from 0.1 nM – 0.01 mM. The endothelium-
independent vasorelaxation was tested by adding increas-
ing concentrations of the NO donor SNP (0.1 nM – 0.01
mM, Sigma-Aldrich Chemie Gmbh, Schelldorf, Germany)
to PGF2α precontracted aorta segments. SNP has been
widely used for this purpose particularly in the clinical set-
ting and in whole animal preparations, whereas the use of
SNP for ex vivo investigation of endothelial-independent
has been less extensive because of the opportunity to use
other types of NO donors. Other segments were used for
the assessment of PE-induced vasoconstriction. The con-
centration-response curves were generated by increasing
the concentration of PE (Sigma-Aldrich Chemie Gmbh,
Schelldorf, Germany) in the organ baths in a stepwise
manner (0.1 nM – 0.1 mM). The segments exposed to ace-
tylcholine or PE were then contracted once with 125 mM
K+-PSS followed by 4 PSS rinses, after which an endothe-
lium check was performed by precontracting the vessels
with approximately 3 μM PGF2α before adding 0.01 mM
acetylcholine. Finally the aorta segments were stimulated
with a cocktail of 125 mM K+-PSS, 0.01 mM PGF2α and 1
μM U-46619 (Cayman Chemicals, Ann Arbor, USA) to
induce a maximal contraction to which any other contrac-
tion could be held in comparison.

Curve fitting and analysis
All steps in the concentration-response curves were
recorded at the point considered to be the lowest (acetyl-
choline and SNP) or highest (PE and cocktail) steady state
value obtained at that concentration of vasoactive reagent.
The basal tone of the aorta was subtracted from all record-
ings of drug-induced vessel tone, estimated by placing a
baseline in the Myodaq program. The relaxation caused
by acetylcholine and SNP was expressed as the percent
relaxation of the precontraction tension produced by
PGF2α. The contraction caused by PE was expressed as the
percent of the maximal contraction obtained when stimu-
lating the aorta segment with a cocktail consisting of K+-
PSS, PGF2α and U46619. The EC50 and Emax values were
calculated using the GraphPad Prism version 4 (San
Diego, USA). The data were fitted to sigmoid curves with
varying slopes using non-linear regression according to
the following equation:

Y = Bottom + (Top - Bottom)/(1 + 10 ^ ((Log EC50 - X) * 
HillSlope)

X is the logarithm of concentration and Y is the response.
Y starts at Bottom and goes to Top with a sigmoid shape.
We analyzed the data by ANOVA test with unequal vari-
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ance, because there was not homogeneity of variance
between the groups. The curve fitting was carried out in
Graph Pad Prism 4 and the Emax and EC50 with corre-
sponding 95% confidence intervals (CI) were calculated.
Groups with non-overlapping 95% CI are considered sta-
tistically significant different at 5% level. The data points
on each curve are expressed as mean ± SEM.

Abbreviations
apoE: apolipoprotein E; ACh: acetylcholine; CI: confi-
dence interval; eNOS: endothelial nitric oxide synthetase;
NO: nitric oxide; PE: phenylephrine; PSS: physiological
saline solution; SEM: standard error of the mean; SNP:
sodium nitroprusside.
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